高性能计算在科研领域至关重要在科学研究领域,AI for Science是近年来的新的研究风潮。传统科学计算不能满足Ai for science的需求,高性能计算可以,AI for science的兴起会提高对高性能计算的需求。所谓AI for Science,即在科学计算中引入AI的方法,来进行科学研究——今天的通用人工智能,通过大数据、大算力和强算法,学会了没有教过它的技能,但这些技能仍是人类已掌握的。而未来,通用人工智能则是把人类的知识压缩给到计算机,通过新的技术和模型,继续训练人工智能,从而发现过去人类未知的领域。AI for Science不仅可以帮助科学家解决已有的问题,也可以帮助科学家发现新的问题和方向。AI可以通过生成新的假设、设计新的实验、提出新的问题等方式,激发科学家的创造力和好奇心。例如,在医药领域,微软研究院科学智能中心(AI4Science)利用深度学习对药物分子进行生成和优化,从而加速药物开发和创新。在地球科学领域,美国国家气象局利用AI对气象数据进行预测和分析,从而提高灾害预警报和应对。目前,全球各国大学目前都在高性能计算领域进行深度攻关,高性能计算(HPC)、理论、实验成为当今高校开展科学研究的三大支柱,尤其是高性能计算,已经成为衡量一所学校科研实力的最重要指标,高校其它各学科对高性能计算资源的依赖越来越强,需求递增攀升。上海交通大学有“思源一号”绿色水冷高性能计算机群,总计算力为6000万亿次/秒,可实现42%的节能减排。类似的还有北京大学‘未名一号’,这是国内首个大型温水水冷高性能计算集群,理论计算峰值高达411万亿次/秒。该平台可以为数学、力学、物理学、化学、生物学、地球科学、计算机科学等学科提供了高性能计算环境。高校建高性能计算中心,是由高校进行科研创新、培养科研人才的切实需求决定的。中国石油集团东方地球物理公司数据中心原总工程师赖能和告诉《财经十一人》,高性能计算有助于推动科技创新能力的跨越式发展,要跨越式发展就一定要使用高性能计算进行突破。他表示,中国高性能计算已经进入全球第一梯队,TOP100高性能计算机平均能力比全球TOP500平均能力高出30%。其中自主研发的集群占95%。不过,中国高性能计算整体实力仍有待提高。根据国防科技大学的统计数据,在全球高性能计算机性能TOP50机器制造台数上,中国虽然近年来一直保持数量稳步增长,但距离美国仍有较大差距。特别是2015年起,美国将多所中国高性能计算相关机构或企业,包括国防科大、无锡江南计算技术研究所、曙光等列入实体清单。也就是说,高性能计算正在成为大国之间科技竞争的前沿。发展自主可控的高性能计算至关重要。高校之外,高性能计算商用前景拓宽?根据国防科技大学统计,国内高性能计算市场格局稳定,联想、曙光和浪潮分别占据市场份额前三,但是只有曙光一家拥有从硬件到软件系统的国产自主知识产权。赖能和认为,国产GPU要获得大规模应用,需要实现与国际主流生态的兼容,并要解决自身生态建设问题。虽然目前我们还有差距,但可以一步一个脚印地来。盛乐标则认为,ChatGPT带动了AI大模型热度居高不下,但它的热度总有一天会降下去。新的GPT模型对硬件资源需求非常大,并且开始闭源,预示着很多应用要建立自己的软件生态并要持续优化算法。通过计算方法的革新和软件算法的优化,以降低AI对硬件大规模数量的依赖,或许是国内科研领域实现弯道超车更经济的方法。根据东吴证券的研究,目前,我国高性能计算中心建设主要通过部省(市)合作协议确立高性能计算中心的建设计划,国家科技部代表国家科技战略对主机性能设定目标。地方政府希望高性能计算中心能成为区域科技发展的功能载体,为其聚集人才、创新科技并推动经济发展。东吴证券2021年预计,大型高性能计算中心单个投入在 20 亿元以上,按平均每年新建5个高性能计算中心来计算,政府规划的高性能计算中心市场规模每年将达到 100 亿元。除了高校和科研机构,更广阔的使用前景理应是在产业。根据第三方机构观研天下数据,2022年中国整体高性能计算市场规模或超 400 亿元。除政府规划外,互联网巨头、运营商和硬件制造厂商均在均积极布局高性能计算建设。随着高性能计算的发展,尤其是使用成本的不断下降,其应用领域也从过去传统的核武器研制、石油勘探、国防安全等专业领域向更广泛的制药、基因工程、动漫渲染、互联网等更“平民”经济领域延伸。利用高性能算力+专业数字研发平台+AI已经成为了新的趋势。吉利汽车就打造了自家的高性能计算中心,用于新车研发中碰撞试验。不过,并不是所有企业都如此财大气粗。在高性能计算商用前景中,成本是第一道大考。计算中心的建设成本高昂,除了后续电费运维支出,南京大学高性能计算中心2015年二期一次性建设费用为5000万,这一价格为高校采购价格,远低于企业自建高性能计算中心所需费用。盛乐标告诉《财经十一人》,如果企业自建高性能计算中心,明面上的成本是购买服务器这些硬件基础设施和后续每年的电费、维护费,这些投入已经不菲;而超算建好以后,隐性的成本是软件和人。企业使用的商用软件非常贵,特别是一些工业软件仍旧存在卡脖子问题,对于特殊行业,甚至难以买到国外的软件。人才也分两种:一类是会管理的人、一类是会应用的人。超算管理相关的人才在国内是短缺的;至于应用的人才,跟企业的业务密切相关,也跟企业在研发上的投入力度有关。“到底企业能有多少相关的研发投入?企业能支持引进或招聘多少大规模应用超算平台人才?没有足够的人才的投入,即使自建了超算,也发挥不出超算的价值。国内自建超算的制造业企业,一般都是需要超算帮助其产品更新的大型制造企业,但是对于更多的企业,不一定能舍得投入这么多经费和人力来进行研发。”盛乐标说。而如果企业选择到外面的超算/智算中心租用资源,虽然每次使用成本会高些,但是一次性的投入就少了。不过即使是外面租用,也得是认真做深入研发的企业才会投入。也就是说,只有极少数的企业,才能有需求、有资源且有人才来采用高性能计算。因此,在未来,AI for Science将会给高性能计算带来新的机遇和挑战。巨头企业现在投入高性能计算中心,更有可能获得技术上的领先和突破。但是,高性能计算发展前景,尤其是商用前景仍旧需要生态圈里的各个角色的共同努力。
说点什么...