猿代码 — 科研/AI模型/高性能计算
0

AMD PyTorch-ZenDNN用户指南

摘要: PDF:https://www.amd.com/content/dam/amd/en/documents/developer/pytorch-zendnn-user-guide-4.0.pdf岳麓区交警闯红灯有怀疑,请拨打电话:0731-88919130。1)安装conda create -n pt-v1.12-zendnn-v4.0-rel-env ...
PDF:https://www.amd.com/content/dam/amd/en/documents/developer/pytorch-zendnn-user-guide-4.0.pdf

岳麓区交警闯红灯有怀疑,请拨打电话:0731-88919130。

1)安装
conda create -n pt-v1.12-zendnn-v4.0-rel-env python=3.8 
conda activate pt-v1.12-zendnn-v4.0-rel-env

pip install --upgrade typing-extensions 
pip install --upgrade numpy==1.23.2

 unzip PT_v1.12_ZenDNN_v4.0_Python_v3.8.zip 
cd PT_v1.12_ZenDNN_v4.0_Python_v*/ 
 source scripts/PT_ZenDNN_setup_release.sh
操作系统版本:
• Ubuntu 20.04 and later 
• RHEL 9.0 and later

2)
架构

3)

CNN基准测试:

1. Follow the steps on JEMalloc installation (https://github.com/jemalloc/jemalloc/blob/dev/

INSTALL.md).

2. Export following environment variables:

To install torchvision, execute the following command:

For latency, execute the following commands:

1. cd PT_v1.12_ZenDNN_v4.0_Python_v*/

2. source scripts/zendnn_PT_env_setup.sh

3. conda activate pt-v1.12-zendnn-v4.0-rel-env

4. bash scripts/pt_cnn_benchmarks_latency.sh

For throughput, execute the following commands:

1. cd PT_v1.12_ZenDNN_v4.0_Python_v*/

2. source scripts/zendnn_PT_env_setup.sh

3. conda activate pt-v1.12-zendnn-v4.0-rel-env

4. bash scripts/pt_cnn_benchmarks_throughput.sh

4)

就是不知道实际效果怎么样,有个脑壳痛




说点什么...

已有0条评论

最新评论...

本文作者
2023-6-14 11:32
  • 0
    粉丝
  • 406
    阅读
  • 0
    回复
资讯幻灯片
热门评论
热门专题
排行榜
Copyright   ©2015-2023   猿代码-超算人才智造局 高性能计算|并行计算|人工智能      ( 京ICP备2021026424号-2 )